67 research outputs found

    ACI-BENCH: a Novel Ambient Clinical Intelligence Dataset for Benchmarking Automatic Visit Note Generation

    Full text link
    Recent immense breakthroughs in generative models such as in GPT4 have precipitated re-imagined ubiquitous usage of these models in all applications. One area that can benefit by improvements in artificial intelligence (AI) is healthcare. The note generation task from doctor-patient encounters, and its associated electronic medical record documentation, is one of the most arduous time-consuming tasks for physicians. It is also a natural prime potential beneficiary to advances in generative models. However with such advances, benchmarking is more critical than ever. Whether studying model weaknesses or developing new evaluation metrics, shared open datasets are an imperative part of understanding the current state-of-the-art. Unfortunately as clinic encounter conversations are not routinely recorded and are difficult to ethically share due to patient confidentiality, there are no sufficiently large clinic dialogue-note datasets to benchmark this task. Here we present the Ambient Clinical Intelligence Benchmark (ACI-BENCH) corpus, the largest dataset to date tackling the problem of AI-assisted note generation from visit dialogue. We also present the benchmark performances of several common state-of-the-art approaches

    Development and validation of a nomogram model for predicting unfavorable functional outcomes in ischemic stroke patients after acute phase

    Get PDF
    IntroductionPrediction of post-stroke functional outcome is important for personalized rehabilitation treatment, we aimed to develop an effective nomogram for predicting long-term unfavorable functional outcomes in ischemic stroke patients after acute phase.MethodsWe retrospectively analyzed clinical data, rehabilitation data, and longitudinal follow-up data from ischemic stroke patients who underwent early rehabilitation at multiple centers in China. An unfavorable functional outcome was defined as a modified Rankin Scale (mRS) score of 3–6 at 90 days after onset. Patients were randomly allocated to either a training or test cohort in a ratio of 4:1. Univariate and multivariate logistic regression analyses were used to identify the predictors for the development of a predictive nomogram. The area under the receiver operating characteristic curve (AUC) was used to evaluate predictive ability in both the training and test cohorts.ResultsA total of 856 patients (training cohort: n = 684; test cohort: n = 172) were included in this study. Among them, 518 patients experienced unfavorable outcomes 90 days after ischemic stroke. Trial of ORG 10172 in Acute Stroke Treatment classification (p = 0.024), antihypertensive agents use [odds ratio (OR) = 1.86; p = 0.041], 15-day Barthel Index score (OR = 0.930; p < 0.001) and 15-day mRS score (OR = 13.494; p < 0.001) were selected as predictors for the unfavorable outcome nomogram. The nomogram model showed good predictive performance in both the training (AUC = 0.950) and test cohorts (AUC = 0.942).ConclusionThe constructed nomogram model could be a practical tool for predicting unfavorable functional outcomes in ischemic stroke patients underwent early rehabilitation after acute phase

    Global Behavior for a Strongly Coupled Predator-Prey Model with One Resource and Two Consumers

    No full text
    We consider a strongly coupled predator-prey model with one resource and two consumers, in which the first consumer species feeds on the resource according to the Holling II functional response, while the second consumer species feeds on the resource following the Beddington-DeAngelis functional response, and they compete for the common resource. Using the energy estimates and Gagliardo-Nirenberg-type inequalities, the existence and uniform boundedness of global solutions for the model are proved. Meanwhile, the sufficient conditions for global asymptotic stability of the positive equilibrium for this model are given by constructing a Lyapunov function

    An Integrated ANP Modle for Decision-making of Urban Regeneration Projects

    No full text
    Abstract. An integrated model based on ANP method was developed in this paper to optimize the decision-making process of urban regeneration projects. In this model, a nonlinear programming and DEMATEL methods were adopted to improve the processes of traditional ANP, a Zero-one Programming method was used to find out the optimal combination with the constraints of the total budget. Nine alternative urban regeneration projects in downtown Chongqing were adopted to test the developed model. It was proved that the improved model was feasible and effective to solve the problem of optimizing the decision-making process of urban regeneration projects

    Spatiotemporal Distribution of Drought Based on the Standardized Precipitation Index and Cloud Models in the Haihe Plain, China

    No full text
    The Haihe Plain is the largest component of the agriculturally vital North China Plain, and it is characterized by serious water shortage and frequent droughts, which lead to crop reduction and have adverse effects on agriculture and ecology. We used daily precipitation data from 1955–2017; the region’s spatiotemporal characteristics of drought were analyzed by using the standardized precipitation index (SPI), drought probability, and Mann–Kendall test for seasonal scale including two main crops growth seasons for the region’s main crops. Furthermore, a cloud algorithm model was established to analyze the dispersion and instability of the SPI. The annual drought frequency is 28.57%; the SPI for spring has an increasing tendency, while summer shows a significant decreasing trend (p < 0.05); the Haihe Plain has had a tendency towards drought over the last 63 years. The SPI in northwest is the smallest and increases gradually toward the south; the severity of drought in dry years increased from southeast to northwest. The cloud model shows that the SPI randomness of each site decreased significantly and tended to be stable and uniform. The deterministic and stable SPI of each station is stronger in dry years, and the randomness and instability are stronger in wet years. The inter-annual differences of the characteristic values of the SPI cloud model are bigger than the differences among sites, and the inter-annual randomness and inhomogeneity of the SPI are higher
    • …
    corecore